Certain property of the Ricci tensor on Sasakian manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci Solitons in Lorentzian Α-sasakian Manifolds

We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...

متن کامل

On - Curvature Tensor in Lp-sasakian Manifolds

Some results on the properties of T -flat, quasiT -flat,  T -flat,  T -flat, T -semi-symmetric,  T Ricci recurrent and T - -recurrent LP-Sasakian manifolds are obtained. It is also proved that an LP-Sasakian manifold satisfying the condition T . 0 S  is an  -Einstein manifold. MSC 2000. 53C15, 53C25, 53C50, 53D15.

متن کامل

Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds

We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.

متن کامل

On Generalized Recurrent and Ricci Recurrent Lorentzian Trans-Sasakian Manifolds

The purpose of the paper is to introduce the notion of generalized recurrent Lorentzian transSasakian manifold and study some of the properties of generalized recurrent and Ricci recurrent Lorentzian Trans-Sasakian manifolds.

متن کامل

On Conharmonically and Special Weakly Ricci Symmetric Sasakian Manifolds

We have studied some geometric properties of conharmonically flat Sasakian manifold and an Einstein-Sasakian manifold satisfying R(X, Y ).N = 0. We have also obtained some results on special weakly Ricci symmetric Sasakian manifold and have shown that it is an Einstein manifold. AMS Mathematics Subject Classification (2000): 53C21, 53C25

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1979

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-40-2-235-237